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Based on the floating reference theory, a new method for extracting the net analyte signal (NAS) is
proposed. The noise background subspace is spanned by spectra at the floating radial reference point,
and then, the spectra at the measurement point are projected on the subspace. Thereafter, the glucose
concentrations in intralipid solutions are investigated through Monte Carlo simulation and experiments,
and the partial least squares (PLS) models with and without NAS analysis are built. The root mean
square errors of calibration and prediction reach to 28.87% and 27.33%, respectively. The results confirm
the existence of information induced by glucose concentration variations as well as the validity of the
floating reference theory.
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With the improvement of people’s living standard and
quality of life, diabetes mellitus has become a serious
health problem around the world. Self-monitoring and
tight glycemic control are recognized as the primary goals
in the management of diabetes to reduce the incidence
of complications. Therefore, many diabetics often have
to measure their blood glucose concentration via an in-
vasive method, such as using a portable glucose meter,
which is painful and has the risk of infection. Transcuta-
neous detection of blood glucose will thus make diabetic
patients’ lives better.

Near-infrared (NIR) spectroscopy is fast and does not
need medical disposable materials. It has been proposed
as a valid means for noninvasively measuring in vivo
blood glucose. NIR spectroscopy probes the overtone
and combined vibrational transitions of the C-H and O-H
of glucose molecules. Combined with a priori knowledge
of the spectra and analyte concentration, multivariate
calibration methods such as partial least squares (PLS)
regression or principal component regression are applied
to build models for determining the glucose concentra-
tions of unknown samples.

To date, many groups have reported encouraging re-
sults for glucose predictions via NIR spectroscopy[1−3].
However, the glucose level in human tissues is low, and
changes in the physiological range are very small. More-
over, vibrational transition bands are typically broad,
leading to highly overlapping bands between the glucose
and other interferents, such as water, fat, and proteins.
The glucose signal of human skin in the NIR spectra is
very weak compared with that from other skin tissue
components or body temperature change. Thus, chance
temporal correlation may occur easily from unreasonable
experimental and analytical processes[4,5]. In addition,
the most widely used PLS regression algorithm, which
is designed to accentuate all signals, may result in func-
tional models based on some chance correlation factors.

Moreover, these models may not distinguish or enhance
glucose-specific spectral variations from complex spectra.
Hence, proving that glucose concentration predictions are
based on the spectral features of glucose rather than on
spurious correlations is difficult[6] .

For chance correlations caused by time-dependent sam-
pling, Arnold et al.[7] used a phantom model to demon-
strate that non-invasive human NIR spectra and cali-
bration models could not predict glucose values when
the glucose assignments were random. However, ap-
parently, functional models are obtained when glucose
assignments are made in a nonrandom, time-dependent
manner. The net analyte signal (NAS) calibration vec-
tors were compared with PLS calibration vectors, and the
chance temporal correlations between assigned glucose
concentrations and some uncontrolled experimental pa-
rameters were confirmed[8]. Similar experimental valida-
tions via Raman spectroscopy have been conducted[9,10].
In Ref. [11], random sampling, background correction,
and a careful experimental design could be used to re-
move/minimize chance correlation.

Our group investigated the diffuse reflectance light
intensity change based on glucose concentration varia-
tions in specific radial positions, and the results showed
two particular radial points: the reference and measure-
ment points. The floating-reference theory was then
proposed[12−14], as shown in Fig. 1. The floating-
reference point is insensitive to glucose concentration
variations, and its existence has already been demon-
strated by Yang et al.[14]. On the other hand, the spec-
tra at the measurement point have maximum sensitivity.
The existence of the floating-reference point has been
demonstrated via Monte Carlo simulations of intralipid
solution, skin models, and a series of in vitro experi-
ments.

NAS was first proposed by Lorber[15] in 1986 as a part
of the pure component spectrum orthogonal to all other
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Fig. 1. Diagram of the floating-reference.

coexisting constituents. The key step in NAS analy-
sis is to find a background subspace. Thus, the qual-
ity of the background subspace constructed from the
noise signal determines the accuracy of the analyte sig-
nal extraction[16]. In the system based on the floating-
reference theory, the spectra measured at the reference
and measurement points cover the same interferences.
However, no glucose concentration variation is included
at the reference point. Therefore, the spectra matrix at
the reference point may act as the background subspace
to reduce the influence of interference on glucose deter-
mination.

In this letter, the spectra matrix at the reference point
is used to substitute for the projection matrix to calculate
the NAS

rnet = (I − R̂FR̂+
F )r̂, (1)

where r̂ is the measured spectra after preprocessing at
J wavelengths, R̂F is the reconstructed background ma-
trix, the superscript “+” symbolizes the Moore–Penrose
pseudoinverse, and I is the identity matrix.

rnet is free from interferences. Thus, it can be replaced
by a scalar representation, e.g., its Euclidean norm, with-
out loss of information[17]. The Euclidean norm of NAS
nasnorm(rnet) is proportional to the concentration of
component c

nasnorm(rnet) = k1c + k0, (2)

where k1 and k0 are constants.
In this case, NAS is only related to the measurement

spectra and background subspace constructed from the
interference signals and does not need glucose concentra-
tion reference value. It can avoid errors caused by the
glucose difference from different sites or the physiologi-
cal lag between glucose in the blood and interstitial fluid
compartments[18]. Moreover, the chance correlations
between the analyte of interest and other interferents,
instrument noise, instrument drift, change of measure-
ment conditions, and sample status variation can be
significantly eliminated.

To validate the effectiveness of the new method, we
performed a Monte Carlo simulation[19] on the 10% in-
tralipid solution. The light propagation process was
simulated, and the distribution of diffuse reflectance at
different radial distances was obtained by initializing the
optical parameters. The incident photon number was
1×108, and glucose concentration varied from 0 to 2 000
mg/dL with an interval of 100 mg/dL. The wavelength
range was 1 200 to 1 600 nm with an interval of 20 nm.

Under the illumination of an infinite ultrafine point light
source, 21 groups of diffuse reflectance spectra induced
by glucose concentration variations at different radial
distances can be obtained.

After being corrected by the pure 10% intralipid solu-
tion, the variation in the diffuse reflectance spectra after
adding glucose (50, 1 000, 1 500, and 2 000 mg/dL) in the
1 320 and 1 480 nm distances are shown in Figs. 2(a) and
(b).

Figure 2 shows point A where the variation of diffuse
reflectance spectra is equal to zero, indicating insensitiv-
ity to glucose, and point B where the variation of diffuse
reflectance spectra has maximum sensitivity. Similar re-
sults can be observed at other wavelengths. Point A is
defined as the radial floating reference. In other words,
at different wavelengths, the reference and measurement
points have slight differences in radial distances from
the light source. Then, we constructed the background
space spanned by the diffuse reflectance wavelength spec-
tra from point A at different wavelengths and glucose
concentrations, and the spectra at point B were projected
on it. The regression curve between the Euclidean norm
of NAS and glucose concentrations was established, as
shown in Fig. 3.

Fig. 2. (Color online) Variation of diffuse reflectance inten-
sity in 10% intralipid with different glucose concentrations in
(a) 1 320- and (b) 1 480-nm distances (in simulation).

Fig. 3. (Color online) Regression curve between Euclidean
norm of NAS and glucose concentration (in simulation).
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The results of the NAS analysis of the simulation
curves presented a good linear relationship between the
Euclidean norm of NAS and glucose concentration (cor-
relation coefficient r=0.999).

For the experimental validation, we developed a NIR
diffuse reflectance measurement system based on an
acousto-optic tunable filter. Spectra at the reference
and measurement points at the wavelength region of
1 110−1600 nm can be obtained simultaneously using a
dual optical fiber probe. All the fiber bundles, which
were composed of densely arranged single root quartz
fibers (outer diameter: 0.1 mm), were integrated into
one end of the probe (C). Meanwhile, the other end was
divided into three probes, corresponding to the incident
fiber bundle and two concentric fiber bundle loops. The
incident fiber bundle (O) was in the probe center, and its
radius was 1 mm. The other two loops were used for re-
ceiving backward diffuse reflectance light. The inner and
outer radii of the reference point fiber bundle were 1.3
and 1.7 mm, respectively, and those of the measurement
point fiber bundle were 1.7 and 2.1 mm, respectively.
The schematic diagram is shown in Fig. 4.

The 10% intralipid solution with different glucose con-
centrations was used to simulate the human tissue, with
different glucose concentrations from 100 to 2 000 mg/dL
at 100 mg/dL intervals. Therefore, the dataset with 20
samples induced by glucose concentration variations and
the corresponding NIR spectra can be acquired.

During the measurement, the spectra of the intralipid
with and without glucose were obtained alternately, and
the samples were measured randomly. The spectra of
each sample at the reference and measurement points
were collected simultaneously. After performing prin-
ciple component decomposition on the spectra, we ob-
tained the reconstructed measured spectra matrix r̂ and
background spectra matrix R̂F to calculate the NAS of
glucose.

The residuals of the dataset were inspected, and the
samples with glucose concentrations of 400, 1 700, 1 800,
and 1 900 mg/dL were considered spectral outliers that
had to be removed. Then, 16 calibration samples were set
aside to build the models, which were created from the
remainder of the dataset. The regression curve between
the Euclidean norm of NAS and glucose concentrations
was established after removing the singular points, as
shown in Fig. 5.

Fig. 4. Photograph and schematic diagram of the dual optical
fiber probe.

Fig. 5. Regression curve between Euclidean norm of NAS and
glucose concentration (in vitro experiment).

Figure 5 shows that the results of the in vitro exper-
iments are consistent with those of the simulation. A
good linear relationship between Euclidean norm of NAS
and glucose concentration (r=0.992) was observed, and
the standard deviation was 0.00137 a.u.

After removing the outliers, we built the PLS regres-
sion models based on the calibration set spectra of the
original measurement and the spectra with the NAS
analysis included. In our investigations, the experimen-
tal dataset, consisting of 16 samples, was split into cali-
bration (15) and prediction (1), that is, no independent
prospective prediction set was obtained because of the
limited number of samples. Thus, a leave-one-out full
cross-validation protocol was employed to estimate the
models built from the samples. The prediction accuracy
of the models was evaluated in terms of the root mean
square errors of calibration (RMSEC) and prediction
(RMSEP), which were calculated using Unscrambler 9.7
(CAMO, Norway). The calibration and validation re-
sults are listed in Table 1.

The correlation coefficients for the calibration and
cross-validation of the two models had no obvious
difference. However, after NAS analysis, RMSEC and
RMSEP decreased to 71.226 and 82.836 mg/dL from
100.135 and 113.989 mg/dL, respectively. The precision
of the prediction errors for calibration and validation was
improved by 28.87% and 27.33%, respectively.

In conclusion, a novel method based on the floating-
reference theory is proposed for the extraction of NAS.
The background subspace is spanned by the spectra at
the floating-reference point. Then, the spectra at the
measurement point are projected on it to calculate the
NAS of glucose, which can effectively avoid the influence
of chance temporal correlations. Moreover, the Monte
Carlo simulation and in vitro experiments of the 10%

Table 1. Calibration and Validation Results of
in vitro Experiment

Calibration Correlation RMSEC Correlation RMSEP

Sets Coefficient for (mg/dL) Coefficient for (mg/dL)

Calibration Cross-validation

1 0.981 100.135 0.977 113.989

2 0.991 71.226 0.978 82.836

1 means the calibration sets based on the original spectra at
the measurement point; 2 means the calibration sets based
on the spectra after NAS analysis.
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ntralipid solution with different glucose contents are
conducted to verify the effectiveness of the method. The
results show that the NAS of glucose in the experiment
is consistent with that in the simulation. The Euclidean
norm of NAS is highly correlated with the glucose con-
centration, and the prediction error of the multivariate
model can be improved, indicating that the spectra at
the measurement point are glucose specific and useful in
extracting the characteristic information of glucose based
on the floating-reference method. Multiple factors, in-
cluding fluctuations of temperature, physiological glucose
dynamics, and skin heterogeneity in human subjects, are
known to introduce curved effects in the relationship
between the analyte concentrations and the spectra. A
nonlinear regression algorithm, such as support vector
machines, is introduced to enhance the robustness and
prediction accuracy of the calibration model[20−23]. To
evaluate the benefits of the new method, we design and
conduct experiments containing nonlinear factors, which
will be the focus of our future work.
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